
V122522

http://github.com/toddaustin07/rpi-st-device1

_____________________________________________________________________

How to Configure your Raspberry Pi for SmartThings® direct-connected Devices
________________________________________________________________________________

Introduction

This guide will cover all the steps to getting your Pi set up to successfully implement a SmartThings
direct-connected device application.

By far, the easiest, and least error-prone path to success is to use the ‘mastersetup’ script available
here. This script will automate the majority of the steps outlined in this document to get you up and
running relatively quickly. All you need to do is download the one file and execute it. Even if using
the mastersetup script, you will still want to refer to two important sections in this document: (1)
Register test device in Developer Workspace (page 8), and (2) Device Onboarding (page 18).

For those who insist on performing all the setup and configuration tasks manually, this guide will provide step-by-
step instructions to do that. And for those using the mastersetup script instead, it will provide all the gory details
of what is being automated for you. However, a word to the wise for either scenario: If this is your first time
going through this process, resist making modifications to these instructions or to the mastersetup process.
Follow them to the letter your first time through, THEN you can experiment with your own modifications. There
are a few important inter-dependencies among configuration elements that you might not grasp until you’ve
successfully completed the process once, so making changes beyond the recommendations here can result in
frustration and wasted time.

Information here is divided into the following sections

1. Preparation

2. Install the required software

3. Register your device in SmartThings Developer Workspace

4. Configure your Pi’s Wifi

5. Onboard your Device

I know this guide looks daunting, and I’m surprised myself it takes this many pages of documentation!
However, know that just about all of this is a one-time setup. Once you get everything working,
implementing device applications that can interface to SmartThings via a simple API is quite easy to
do.

In this document, there are many terminal commands I will suggest. Those are highlighted with a
cyan background and you can copy/paste these to a terminal window. The ones in bold are
generally going to be required; the ones that are optional are not bold. Some commands are
purposely prefixed with ‘sudo’ where it is required, so mind those cases.

If you find anything in this document that can be improved, please don’t hesitate to open an
issue on my github repository.

http://toddaustin07.github.io
https://github.com/toddaustin07/rpi-st-device
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device2

Preparation
Get a SmartThings Developer account: https://smartthings.developer.samsung.com/
Get a Github account: www.github.com

Read the following documents:

SmartThings Developer documentation for “Direct-connected devices”

SmartThings Community Topic – “How to Build Direct Connected Devices” (how-to instructions)

Important Note: you will not follow every step in that community post since it was not written for Raspberry Pi and
is somewhat outdated at this point. But we will refer to it and follow some of the same procedures outlined there.
I will refer to this resource often in this guide using the term “how-to instructions”, and call out specific section
numbers where applicable.

Validating your model of Raspberry Pi is capable

There are multiple Pi models out there and not all include wifi chips that have the right capabilities to
function in an IOT environment. If you own a Raspberry Pi Version 3 or later, chances are you'll be
OK. The key wireless capability required is called "AP mode" or Access Point mode. This feature
puts your Pi in the mode of being a WAP (wireless access point), similar to what your wireless router
is in your home. This mode is used only during initial device onboarding to SmartThings, so it's a
rather fleeting requirement. Nevertheless AP mode is required to successfully complete the device
onboarding process with the SmartThings mobile app and requires some special setup on the Pi.

Even if your Pi has wireless, it doesn't necessarily mean the wifi chip supports AP mode, although I
suspect that with all recent Pi models version 3B or later you won’t have a problem.

To confirm that your Pi is capable of supporting AP mode, execute this command from a terminal
widow:

iw phy0 info

'phy0' is the usual name of the physical wireless device. It's possible yours could be different.
The command above will display a whole lot of info regarding your wifi hardware support but what you
are looking for is about 15 lines down from the beginning where it says Supported interface modes.
In that section you are looking for “* AP”. If it's listed there you are good to proceed.

As of this writing, the following Pi models have been tested and should work without issue: Model
3b, Model 4 (all), Zero W.

Raspberry Pi OS Lite

The instructions in this document generally assume you have a full Raspberry Pi OS installation on
your Pi, however the Lite version of the OS (no desktop GUI) is also supported.

Prior to installing the required software, you will have to install two packages that are not included in
the Lite OS:

https://smartthings.developer.samsung.com/
http://www.github.com
https://developer-preview.smartthings.com/docs/devices/direct-connected/get-started
https://community.smartthings.com/t/how-to-build-direct-connected-devices/204055
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device3

sudo apt-get install python3-pip
sudo apt-get install git

You will also need an alternate way to display a QR code that you will generate for your device
application. Since the Lite OS doesn’t include graphics modules, you will have to do this on another
system: another Pi, or a Windows or Mac computer. More information will be provided when we get to
that step.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device4

Installing the Required Software
Before you start this project, you should take this opportunity to do a full system update to your Pi to
ensure you have the latest of everything. It will reduce the issues you may run into later.

By far, the easiest path to success is to have a recent Pi model (Raspberry Pi 3b+ or 4 or Pi
Zero W) with Raspberry Pi OS Version 10 (“Buster”) (Full or Lite), or Raspberry Pi OS Version
11 (“Bullseye”) (Full or Lite) and Python 3.5 or later. OS versions back to Jessie can also
work if Python3 is updated.

There are 3 parts to the software configuration:

1. Installing software dependencies

2. Cloning and building of SmartThings SDK

3. Installing & configuring the SoftAP software

Some notes about Python

The SmartThings SDK that will later be cloned to your system includes 2 important tools that you will
use in the final device setup. These tools require Python 3.5 or later, so you will need to upgrade if
you have an older system. You can find your Python version(s) by issuing both of these commands
in a terminal window:

python --version
python3 --version

You probably have both version 2 and version 3 even with Buster OS. Confirm if your Python version
3 is at least 3.5.

Upgrading Python is beyond the scope of this guide, so I would recommend searching the
raspberrypi.org forums for instructions.

Beware of Googling vanilla Debian or Linux-platform Python install/upgrade instructions as they may not upgrade
correctly on a Pi.

As a precaution, I'd also recommend you confirm your version of pip (Python package installation
program) by the following commands:

pip --version and pip3 --version << note the double dashes

Make sure you are using the Python 3.x version of pip in the next section below (i.e use ‘pip3.x’
instead of just ‘pip3’ if needed).

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device5

The Raspberry Pi Enabling Package

I have created this package that contains files you will need to (1) build a Pi-enabled SDK core library,
and (2) configure your Pi for working as a SmartThings direct connected device. It is available from
github at: https://github.com/toddaustin07/rpi-st-device

You can clone the repository to your system thusly:

cd ~
git clone https://github.com/toddaustin07/rpi-st-device.git

We’ll refer back to this package shortly.

Additional Software Dependencies

We’re now going to reference the SmartThings community how-to instructions post that I suggested
you read through at the beginning of this document, as it contains some important next steps that we
will partially follow.

In the ‘Workstation Setup’ section of the how-to instructions, there is an apt-get command provided to
update a Linux system with all pre-requisite software modules:

sudo apt-get install gcc git cmake gperf ninja-build ccache wget make libncurses-dev flex
bison gperf python3 python3-pip python3-setuptools python3-serial python3-cryptography
python3-future python3-pyparsing python3-pyelftools libffi-dev libssl-dev

DON’T RUN THIS

You do need these modules, but some should already be installed on your Pi if you have an up-to-
date system. Others are needed on Raspberry Pi in addition to those listed above. I would NOT
recommend you do an ‘apt-get python3’ unless you really know what you are doing; this could cause
problems especially on older Pi’s.

Here’s what I do recommend…

Before you start installing, run these command from your Pi terminal:

sudo apt-get update
sudo apt-get upgrade

I’ll present the next install commands into three groups, but before you start running these individually,
know there is one script available to perform all of these in one shot (identified further below).

1) This group should already be installed on an up-to-date Pi with the full Raspberry Pi OS:

sudo apt-get install gcc make git wget python3-serial python3-cryptography

2) This group will probably need to be installed:

sudo apt-get install cmake gperf ninja-build ccache libncurses-dev flex
bison libffi-dev libssl-dev python3-future python3-pyparsing python3-
pyelftools

https://github.com/todd_austin/rpi-st-device
https://github.com/SmartThingsCommunity/st-device-sdk-c.git
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device6

3) These will be needed in addition to the how-to instructions list:

sudo apt-get install libpthread-stubs0-dev
pip3 install --user pynacl
sudo apt-get install python3-pil
pip3 install --user qrcode

Older Jessie or Stretch OS-based systems may also need this package:

pip3 install --user pillow

You will later use a Python script to create a qrcode for your Pi-based device application that will be
used during initial onboarding. In order to use that tool successfully on a Raspberry Pi Lite OS (no
GUI), you will need to install this additional module:

sudo apt-get install libopenjp2-7

You can either copy/paste the commands above to your terminal, or a simpler way is to run a script
from my package that will issue all these commands for you:

cd ~/rpi-st-device
./installSDKdeps

Watch the output closely for any errors. If you see any problems regarding missing dependencies,
you may have to install those missing ones first, then go back and try again.

Now that you have those packages installed, let’s look at the next steps outlined in the how-to
instructions…

There is a paragraph in the Workstation Setup section that suggests a way to make Python 3 the
default on your system, but this is not needed if you are careful to specify ‘python3’ or ‘python3.x’ and
‘pip3’ or ‘pip3.x’ in all applicable commands. If you have interest in this topic of setting up alternative
Python versions on your Pi, I’d recommend this raspberrypi.org article on the subject.

Skip the how-to instructions pertaining to installing Espressif IDF or ESP32 toolchain. You don't
need any of those files in a Raspberry Pi setup.

The SmartThings SDK

There are actually 2 SDKs related to SmartThings direct connected devices. The one you need is
the core device library SDK. You do NOT need the ‘Reference' SDK, so ignore the ‘Clone the SDK
Reference’ paragraph in the how-to instructions.

Cloning the Core SDK

The SmartThings core SDK is a set of files that contain the source code to build the library that your
device application will use to communicate with SmartThings.

The SDK is located on github at: https://github.com/SmartThingsCommunity/st-device-sdk-c

https://raspberry-valley.azurewebsites.net/Python-Default-Version/
https://github.com/SmartThingsCommunity/st-device-sdk-c
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device7

Be aware that you need about 224Mb of available disk space on your Pi for the SDK.

To clone the core SDK, in a terminal window navigate to your home directory and run the following
command:

cd ~
git clone https://github.com/SmartThingsCommunity/st-device-sdk-c.git

Once that is complete, you will have the SDK on your local disk in the directory ~/st-device-sdk-c.

Build the core device library

Before we issue the make command to build the SDK object module, there are a few modifications
we need to make to the SDK files to build a library that will work on Raspberry Pi. To make this
simple, run the bash script in my Pi package that will make the necessary changes:

cd ~/rpi-st-device
./sdkbuildsetup

Note that any SDK files that are replaced are first saved with ‘ORIG’ added to the name in case you want to
examine them later.

Now we are ready to build the SDK library. Simply execute the make command while in the ~/st-
device-sdk-c directory:

cd ~/st-device-sdk-c
make

The very first time you run a make against the SDK, it will take some time to complete since it will
also be downloading and creating some additional networking libraries (Pi Zero W can be especially
slow). Subsequent makes will go faster.

If you get any errors, you have missing library dependencies. If so, use sudo apt-get until you
remove all dependency errors.

CONGRATS! You have now created the core SDK library module with Raspberry Pi support:

~/st-device-sdk-c/output/libiotcore.a

This file will be linked to your device applications when you build them.

https://github.com/SmartThingsCommunity/st-device-sdk-c.git
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device8

Register Test Device in Developer Workspace

The next several steps will get a simple test switch device profile defined in the SmartThings
Developer Workspace and create 2 json files that your Pi-based device application will need. Get
signed-in to the Developer Workspace now from your web browser and follow the steps outlined in
the how-to instructions starting in section 2.1 Create a new project and through and including 2.7
Download onboarding_config.json. (Update: some of the DW screens have changed, so the
screenshots in the how-to instructions may not be exactly right any more)

Note that you could use any computer’s browser for these steps, including your Windows PC or Mac,
but since you will need to download a file to your Pi as part of this process, it may be more expedient
to do this from your Pi’s Chromium browser (slow as it is!).

As you proceed through the Developer Workspace steps, refer to this additional info that you will
need to complete each section, and do not deviate from these values except for the Country:

Device Profile
Basic Info

Device Type: Switch

Components & Capabilities (main)
‘Switch’
You can leave ‘Health Check’ as well, which is included by default

UI Display
State: Switch
Action: Switch

Device Onboarding

Authentication type: ED25519
Setup ID: 001
Instructions: you can make these anything you like - they are customized prompts you will see on on your

mobile device during the initial onboarding process of your device app. You might want to
make the last prompt (Prepare Device) to remind you to start the device app on your Pi.

Confirm Method: Just Works

Product Info

Product Name: Switch Product
Category: Switch/dimmer
Availability: United States (or other)
Model Number / SKU: US_SKU

Your Test Devices - Create Unique Device Serial Number & device_info.json

At this step in the Developer Workspace (and as described in section 2.6 of the how-to instructions),
you must provide a device serial number and public key for the device you will be testing. To
generate these 2 items you use a tool in the SDK called keygen. Go to the ~/st-device-sdk-
c/tools/keygen directory on your Pi. Here you will find a Python script that you will run to generate
a unique serial number and public key that will identify your Pi-based device to SmartThings.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device9

cd ~/st-device-sdk-c/tools/keygen
python3 stdk-keygen.py --firmware switch_example_001

If you know your SmartThings-assigned ManufacturingName (aka mnmn or mnid), you can also
include it as an argument to the keygen tool, e.g. --mnid eF8b, but this is completely optional.

The keygen output (serial number & public key) must be copy/pasted into the device identity fields
within the Developer Workspace device setup screens as shown in the how-to instructions section 2.6.
Do not try and type these by hand - it is too easy to make a mistake (O vs 0, I vs l vs 1, etc), and if
these are not correct, your device onboarding attempt will fail with cryptic error messages.

Copy device_info.json into device application directory

The keygen tool also created a device_info.json file that needs to be copied to the example
application directory ~/st-device-sdk-c/example (you can replace the one that is there). This file
includes the generated serial number and keys that your device app will need to authenticate with
SmartThings. The keygen tool placed this file into a new subdirectory with a name corresponding to
your device serial number. Copy it into the example directory now:

cd ./output_STDKxxxxxxxxxxxx << where xx…xx is your device serial number
cp device_info.json ~/st-device-sdk-c/example/device_info.json

Download onboarding_config.json

Next you need to download the onboarding_config.json file from the Developer Workspace into the
SDK example directory (again, replacing the file that is already there). This file gets created when
you finish the Device Onboarding steps in the Developer Workspace, so once you completed that,
there should be a download link on the project Overview page. See section 2.7 in the how-to
instructions.

Do NOT follow section 2.8 in the how-to instructions, but you can reference section 3.2 for more
information about the json file we’ve just downloaded. Ignore references to the ESP32 example.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device10

Generate a QR Code for your device

This step uses the second Python tool included in the SDK called qrgen. Let’s run it now with the
following command:

cd ~/st-device-sdk-c/tools/qrgen/
python3 stdk-qrgen.py --folder ~/st-device-sdk-c/example/

The --folder argument must point to the location of the onboarding_config.json and
device_info.json files which should now both be in the example application directory.

After running qrgen, you will have a new .png file in the qrgen directory that represents a unique QR
code for your device, embedded with your unique serial, key, and other device onboarding
information. You will need this later when you use the SmartThings mobile app to add your device.
I’d recommend making it a practice to copy this .png file into your device app directory - in this case
~/st-device-sdk-c/example.

Note: if you do not have the Raspberry Pi OS desktop GUI installed, you will have scp the .png file to a computer
where you can display it during device onboarding. (It cannot be displayed in Raspberry Pi OS Lite due to missing
graphics libraries.)

Build the Example Application

Assuming you have the new device_info.json and onboarding_config.json files stored in the SDK
example application directory, we are now ready to run ‘make’ to build the example device application:

cd ~/st-device-sdk-c/example
rm example << delete any previous example executable to ensure make executes
make

Assuming you had successfully built the SDK core library previously and have not made any changes
to the example.c code, you should pretty much instantly have a successful make with no errors.

Feel free to look through the example.c file to get a feeling for how the SDK APIs are used from a
device application. This example implements a simple on/off switch device.

If you try to run the device application at this point you will get errors, since we first need to get your
wireless configuration set up and the SoftAP applications configured and working.

If you’ve made it this far, congratulations! You’ve now proven you can build the SDK library and the
example application successfully, so you have all the software requirements for those sorted out.
Now we can proceed to configuring your Pi to get it ready to actually onboard and run the device
application that you have just built.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device11

Configuring your Pi to support Wireless AP mode

We need an application that implements the SoftAP capability (AP mode) on the Pi. This will be
accomplished with two service modules called hostapd and dnsmasq. There are other options out
there that perform similar functions, but these are what I have selected as they have a proven history
of successfully running as-is on Raspberry Pis and are fairly lightweight.

All SoftAP-related install and configuration tasks can be accomplish quite quickly by using a bash
automation script included in the RPI package called SoftAPconfig.

(For those preferring a do-it-yourself approach, the manual steps are detailed farther below starting
with “Configuring Wireless Devices”)

Using the Automation Script

Before you run the automated script, have ready the answers to these configuration questions:

1) Wifi device name to use for AP mode
normally ‘wlan0’ - use this for now until you are ready to experiment with other configs

2) Static IP address for your new AP
ensure no conflicts on your home network

3) IP range that the SoftAP DHCP server will assign to connections
make the same subnet as static IP above; ensure no conflicts on your home network

4) Channel number for the AP to use
match the wifi channel used by your home router that you are normally connected to (1-14)

5) Country code (2-character)
reference link e.g. US, GB, CA, etc

Further details on these parameters are contained in the manual steps guidance below. Don’t worry
if some of these are a mystery to you, the script will recommend defaults you can accept in most
cases.

You can run the setup script now:

cd ~/rpi-st-device
sudo ./SoftAPconfig

Please note that you must run this script with root privileges since it will update some network interface
files and services configuration.

If you have customized your /etc/dhcpcd.conf file, then you may be asked to manually edit
dhcpcd_ap.conf during execution of this automation script. If so, follow the instructions at the bottom
of page 12 for the required contents of the dhcpcd_ap.conf file, which should replace any other
existing customized interface wlan0 entries already in the file.

Once you’ve made your wifi config selections and have gotten to the last step in the script to
optionally test hostapd, you can proceed to the section “Testing your PI wireless Access Point” in
this document for more info (the SoftAPconfig script will also automate many of those final testing
steps for you).

https://en.m.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device12

- Start of Manual Configuration Steps - (Skip to page 16 if you ran the automated script, SoftAPconfig)

Configuring Wireless Devices

What we’ll describe here is how to get your wireless device set up on your Pi, without using the
SoftAPconfig automation script. There are actually a number of ways you could configure your Pi,
but for simplicity sake I’m going to approach it one way in this guide. If you have the expertise, you
are welcome to explore other options which are discussed in the Reference section at the end of this
document.

Here is some optional background info for those of you who like to know what’s happening ‘under the
covers’:

AP mode, or Access Point mode is a special capability of your Pi wireless that is required to complete the device
onboarding (or provisioning) process. Put simply, it turns your Pi into a wireless access point so that the mobile
app can temporarily connect directly to it during device onboarding. If you've ever provisioned other wireless
IOT devices (e.g. Ring doorbell), it's a similar process where you run the manufacturer’s setup app on your phone
and your phone's wireless briefly connects to the device's own ssid to exchange configuration information.
Once the device is configured, the device then connects to your home's wireless router and lives the rest of its life
as just another wireless client (also called managed or station) on your network. (And your phone’s wifi
connection resumes back to what it was originally connected to.) This ability for the device (Pi) to temporarily
create its own wireless access point is called “SoftAP” in the industry, and while not the most user-friendly
process, it's the current standard for provisioning wireless IOT devices. The configuration instructions that follow
help setup your Pi to be able to enter this SoftAP state when required.

Determine the wireless device that will handle AP mode

First confirm what wireless devices you have with this command in a terminal window.

iw dev

Note the physical wireless device name in the first line of output - probably called 'phy0'.
Now take note of what Interfaces are listed. If you've never messed around with your devices, you
probably have just one Interface called 'wlan0', and you can see that the ‘type’ shows ‘managed’.
If it's currently connected to your home wireless, you'll also see the SSID listed, and you should take
note of the channel number being used - you will need that later.

For our initial configuration purposes, we will assume the use wlan0 as both our client (managed)
and AP mode device. The wifi mode will be changed dynamically as needed during runtime.

Setup dhcpcd config for AP mode

We will create a new file in the /etc directory that will be utilized by dhcpcd during AP mode.

cd /etc
sudo cp dhcpcd.conf dhcpcd_ap.conf
sudo nano dhcpcd_ap.conf

In order for AP mode to work on your Pi, it must be configured with a static IP address while in AP
mode. So add these lines to the very end of the new dhcpcd_ap.conf file:

interface wlan0
static ip_address=192.168.2.1/24
nohook wpa_supplicant

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device13

Where wlan0 is the name of your wireless device.

Replace the ip_address value with the static IP you want to use. Be sure the IP address is
outside the range that your home DHCP server assigns (which is typically defaulted to 192.168.1.1
through 192.168.1.250). In this suggested config, we will use the 192.168.2.x subnet for our Pi
Access Point. Finally, be sure to include the ‘nohook wpa_supplicant’ line.

Save the dhcpcd_ap.conf file and exit the editor.

SoftAP Services

To install the needed SoftAP services (hostapd and dnsmasq), issue these commands in a terminal
window:

sudo apt-get install hostapd
sudo apt-get install dnsmasq

These two services are installed by default to start at boot time, but we want to prevent that for our
purposes, so run these commands next:

sudo systemctl unmask hostapd
sudo update-rc.d hostapd disable
sudo update-rc.d dnsmasq disable

Note: if you intend to have AP mode running continuously and you want hostapd and dnsmasq to be enabled at boot time,
then change the last two commands to enable instead of disable. This configuration can only be used if Ethernet is
also connected, so it’s not allowed on a Pi Zero W.

Now tell the system where it will find the hostapd configuration file:

sudo nano /etc/default/hostapd

Find the line containing “DAEMON_CONF=” (around line 13), remove the comment symbol (#), and
modify it as follows:

DAEMON_CONF=/etc/hostapd/hostapd.conf

The last step in this section is to modify the SoftAP services configuration files.

First, let’s grab some default config files from my package with a bash script:

cd ~/rpi-st-device
sudo initsoftapconf

This will copy initial configuration files for hostapd and dnsmasq into the appropriate directories.

hostapd Configuration File

The file hostapd.conf should now be located in /etc/hostapd. There are three parameters in this file

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device14

that you will need to modify now, so edit the file:

sudo nano /etc/hostapd/hostapd.conf << ’sudo’ is mandatory

country_code=US make sure it's set for your 2-character country code (US, GB, etc)
reference link

interface=wlan0 set to whatever device name is being used for AP mode

channel=n This value should be set to the same channel (1-14) as wlan0 is normally
connected with as a wireless client. Whatever wireless router your Pi is
connected to by default (as a client), use that same channel for this
hostapd configuration. If your Pi wifi is presently connected to your
wireless router, you can do a iw wlan0 info command to see the
channel it is using. Alternatively, go into your wireless router’s
configuration screens to see how you have it set.
See also below Sidebar on Wifi Channels.

---------------------------------------------------------------------------------------------------------------------------------------------------
Sidebar on Wifi Channels (experts can skip this)
Since we are operating in an IOT environment, it's worth mentioning here the importance of wifi channel
selection. I assume you have a SmartThings hub in your home – hopefully not too close to your wireless
router. You should be aware that the 2.4GHz wireless spectrum overlaps that used by zigbee devices. So
it's important to minimize this potential conflict by choosing a wireless router channel frequency as far away as
your zigbee frequency as you can. Some hubs may have the zigbee channel printed on the bottom of the
physical hub. If not, you can go into the SmartThings IDE and find where you can display the details of your
hub. There it will show what channel it is using for zigbee. Refer to discussions on this topic in the
SmartThings community or Google ‘wifi and zigbee overlap’ and there are some nice graphs (like this) that will
help you choose the best wireless channel to use for your wireless routers. Often it's going to be either
channel 1 or channel 11. As an example, my hub uses zigbee channel 20 which is in the upper-middle part of
the 2.4Ghz range. I have two wireless routers – one configured for channel 1 which is in the same room as
my ST hub, and one configured for channel 11 which is farther away from the hub. That provides frequency
space for zigbee to live between them and also keeps the two routers from conflicting with each other.
---------------------------------------------------------------------------------------------------------------------------------------------------

OK, back to hostapd.conf. Don't change any other parameters besides the 3 specified above. That
goes for ssid and password as well; they will be updated dynamically during runtime. But do take
note of the ssid that is in there now (‘MyPiTestAccessPoint’); you’ll see that later when you bring up
your AP for testing.

Save the hostapd.conf file (back to /etc/hostapd/hostapd.conf) and exit the editor.

Further info on hostapd.conf
As described earlier, hostapd is the service that puts your Pi’s wireless interface into Access Point mode. If you want to
have your wireless permanently in AP mode (only applicable for Pi’s with Ethernet connection), you can changed the SSID
and password in the hostapd.conf file to the values of your choosing. During any device onboarding, hostapd.conf will be
dynamically changed to a different SSID and password while the mobile app needs to connect to it. But don’t worry, your
settings will first be saved and then restored once device provisioning is done. So be aware that your BAU Pi Wifi AP will
be temporarily interrupted during device onboarding.

https://en.m.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://support.metageek.com/hc/en-us/articles/203845040-ZigBee-and-WiFi-Coexistence
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device15

dnsmasq Configuration File

Now look for the dnsmasq config file in /etc and edit it:

sudo nano /etc/dnsmasq.conf

Modify its contents as follows:

interface=wlan0
dhcp-range=192.168.2.2,192.168.2.10,255.255.255.0,12h
domain=wlan
address=/gw.wlan/192.168.2.1

Set interface to the device name being used for AP mode.

Set the dhcp-range (ip address range) you want the Pi AP to assign out to its connecting
clients. Note that I have a small range of addresses shown above since I realistically don't
expect anything to be connecting besides my phone. Again here I am allocating the 192.168.2
subnet to the Pi AP to avoid any conflicts with other DHCP servers on my LAN.

Replace the ip address in the address parameter to be the static address you defined in
dhcpcd_ap.conf

Save the dnsmasq.conf file and exit the editor.

Continue following the steps in the next section, “Testing your Pi wireless Access Point”

- End of Manual Configuration Steps -

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device16

Testing your Pi wireless Access Point

You’ve reached this step either after you’ve run the SoftAPconfig script, or you have followed the
manual instructions above. Either way, by now you should have a fully configured system to enable
SoftAP capability (wireless Access Point) with the hostapd and dnsmasq services.

If you’ve re-booted since completing the previous steps, confirm that your wireless client capability is
still operating. You should be able to use the wifi icon in the top right of the Pi desktop GUI to see
what SSID you are connected to, assuming you are in regular managed/station mode.

There is a bash script that will manually start hostapd for testing, and return your wireless back to
client mode when it is done. (Note that those using SoftAPconfig will have the test started and
terminated for them, so this other script is not needed.)

Warning!! This next step will turn off your wireless client operation. If you are connected as a
remote console to your Pi, you’ll need to be connected instead via Ethernet, or get on to your Pi
console directly. We’ll restore your wireless client operation when we’re done.

cd ~/rpi-st-device
sudo ./testhostapd

When hostapd loads, you may see errors like “failed to create interface mon.wlmyap” or 'Could not
connect to kernel driver”. Don’t worry - these can be ignored. You have success if the last line of
the output shows “AP-ENABLED” . You can verify your AP is live now by using your mobile phone
to go into wireless settings where it displays all available access points in your vicinity. You should
see your new Pi AP listed there as “MyPiTestAccessPoint” which was the default SSID for initial
testing in the hostapd.conf file. NOTE: Do not try to connect to this SSID with your mobile device. It
is configured to only be functional for use by the SmartThing mobile app during an actual device
onboarding.

Once you’ve confirmed the AP is live, Ctrl-c to terminate hostapd, and the testhostapd script will
restore your wireless back to client mode.

Troubleshooting

If your wireless AP interface doesn't seem to be live, the first thing I would recommend after
examining any error messages, is to reboot.

Ensure there is no “soft” block on your physical wireless device:

sudo rfkill list all
sudo rfkill unblock n << where n=single numeric digit (typically 0) corresponding

to the phy0 device listed in the previous command output

Check that the network is up:

ip link in the output, you should see the word “UP” between the
< > brackets for your wireless devices
e.g. wlan0 <BROADCAST,MULTICAST,UP,LOWER_UP>

If your device seems to be down, then issue these commands:

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device17

ifdown wlan0
ifup wlan0

Beyond that, the failure to have a live AP working is most likely a configuration error, so go back and
re-validate all your previous steps.

If you have to fix things, remember that reboots may be needed, or you need to stop (use Ctrl-c) and
restart hostapd and/or restart dhcpcd service (sudo systemctl restart dhcpcd).

When you get SoftAP working successfully, remember to Ctrl-c out of hostapd when you are done.

If you seem to be stuck in AP mode, you can try using ~/rpi-st-device/resetAP to restore it back to
station mode (or re-boot).

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device18

Device Onboarding - Add Device in SmartThings Mobile App

Now we're ready for the real action! We will use the SmartThings mobile app to ‘add’ the test device
to your SmartThings device inventory. You can reference section 4.3 in the how-to instructions for
screenshots of much of this process, although some of them are outdated.

I recommend fully reading through everything here and in the applicable how-to instructions sections
before you proceed.

As described in the how-to instructions section 4.1, you must have 'Developer Mode' enabled in the
ST mobile app through the settings menu.

To ensure ‘Developer Mode’ is on: .

On the main screen of the mobile app, tap the Menu icon in the lower right, then the gear icon
in the upper right. Scroll all the way down in the options and make sure the Developer Mode
switch is enabled. If the switch does not appear, then long-press for 5 seconds the About
SmartThings menu item. The Developer mode switch should then appear below, which you
should turn on. Then restart the SmartThings app.

You also need to make sure that the SmartThings mobile app has permission to use your camera (for
reading a QR code), so take care of that now by going into the appropriate settings of your mobile
phone’s OS.

IMPORTANT: Network connections to the SmartThings MQTT server requires an accurate clock
setting on the Pi, so make sure your Pi clock is set accurately.

Back in the ST mobile app, tap on the + symbol in the upper right and then tap Add device. Don’t
go any further than that yet.

Now open up the QR code image that you created earlier. On the Pi, you can use gpicview in a
terminal command or double-click on the .png file from file manager. Recall the .png file was created
in the ~/st-device-sdk-c/tools/qrgen directory, and I recommended you also copy it to your
application directory - in this case ~/st-device-sdk-c/example. If you are running Raspberry Pi OS
Lite, you’ll have to display this file on another computer (Pi / Windows / Mac).

Back on your mobile phone on the Add device screen, you should see ‘Scan QR code’ as the first
option. Tap that and point your phone’s camera at the QR code image you should now have
displayed on a monitor. That will kick off the next step in the mobile app.

Note: if you get an error here saying the QR code is invalid, then following a different path in the mobile app may
get you passed this. Go back to the Add device screen and below the ‘Scan QR code’ and ‘Scan for nearby
devices’ options you will see a list of icons. Be sure the ‘By device type’ tab is selected, then scroll all the way to
the bottom of the icon list and you should see an icon labeled ‘My Testing Device’ or similar. Tap that, then from
the list of Developer Workbench projects that is displayed, select your Pi test switch (e.g. ‘Jeff’s RPI Test Switch’).
This will launch the onboarding process screens and when you get to the screen that launches the the QR reader,
BEFORE you point it at your QR code, launch the Pi example app as below. THEN, once the example app is
fully initialized and listening, point the phone to your QR code.

Now go to the Pi example directory and launch your device application.

cd ~st-device-sdk-c/example
./example

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device19

You should see numerous informational messages flashing by as the software initializes. If you see
this error message among those displayed, you can ignore it.

[IoT]: _iot_security_be_bsp_fs_load_from_nv(129) > iot_bsp_fs_open(/IotAPPASS) = -1208

Raspberry Pi Zero W users will also see a warning message that Ethernet is not found; this is normal!

The software will determine that you've never onboarded this device before and wait for the mobile
app to initiate onboarding. Once the messages settle and you haven't seen any other errors,
continue back on your phone with the add-device procedure that we started earlier.

On the the mobile app, after the QR code is recognized, there should now be a Start button displayed
which you can tap. You will get to a screen that asks you what Room to put the device in, so select
a room and then tap ‘next’ a couple times until you see a message that asks if you want to join a
network SSID with a name made up of your unique device serial number. Tap yes, and after a short
pause you will see some additional activity from the the Pi device app message log. Then on your
mobile phone you will be presented with a list of SSIDs to connect to. This is what your Pi wifi client
will be re-connected to once AP mode is over (if you have an active Ethernet connection, it’s a moot
point, because that will be used by default). Choose your SSID* and enter the password if required.

*For Pi configurations with an always-on AP mode: the selection of this SSID will have no effect on your Pi’s AP
configuration; your Pi AP will return to the SSID it was configured-to prior to device onboarding.

Once you choose the SSID in the mobile app, there will be a long pause, but if everything goes well
you will eventually see further activity on your Pi terminal and finally get a message from the mobile
app that the device was successfully added. Press OK on the mobile app.

At this point the mobile app will show your new test switch device on your main screen, and you can
try turning the switch on and off. You'll see corresponding log messages on your Pi terminal window
where your device app is running and you can see a sequence number increment each time. Sweet,
it all works!

Troubleshooting

If things don’t go so well and the process craps out at some point, you’ll have to do some
troubleshooting. The first thing I would do is simply retry. If that’s not successful, you can read
through the errors on the Pi terminal and they will narrow down pretty well where the problem
occurred. Note that all the Raspberry Pi-unique-code messages will contain the characters [rpi].

Unfortunately any error messages or codes you may get in the mobile app are usually fairly cryptic
and don’t help with problem determination. But exactly where the process stalls, provides a good
indication of where to look for problems:

If you never get a list of SSIDs to choose from on your mobile app, then it’s likely it wasn’t able to
connect to your Pi. That could mean your AP is not operational, but you can confirm this by the Pi
log messages. There could be a configuration error in your hostapd.conf file, but that is less likely
since you verified this was working during the previous steps.

This could also mean the SSID that the mobile app is looking for is not found. The SSID is
constructed from a combination of your deviceOnboardingId (from onboarding_config.json) and
device serialNumber (from device_info.json). These values are also embedded in the QR code
which also informs the mobile app what SSID to look for. So if values are not synchronized across

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device20

your Developer Workplace configuration, json files, and or QR code file, it would cause this
connection failure. If you jump over to your mobile device’s wifi settings to see the currently
available SSIDs while the example app is still waiting for connection, then you can see what SSID is
live. Confirm that this matches what you would expect. You can also check the Pi example app log
output and there should be a log message that displays a truncated portion of the SSID, e.g.:

[IoT]: iot_easysetup_create_ssid(89) > >> Jeffs RPI Tes[IsZf] <<

In the event the example device application on the Pi appears hung, if you are patient it will usually
time out and your wireless mode will be reset to its original state. If you Ctrl-c out of the example
device application before it times out naturally, it may leave your wireless in the SoftAP state
(up/down arrows instead of the regular wireless icon in the upper right of the desktop). If you find
this is the case, and before you restart the example app to try the onboarding process again, run the
resetAP bash utility in the rpi-st-device folder to get your wireless back to its original mode. In the
rare case that doesn’t work, it may be best to reboot.

When the mobile app is done successfully connecting to your Pi’s access point, it will shut down the
connection, and then the Pi SDK code will then shut down the AP mode and reconnect wifi to the
SSID you selected in the mobile app. The mobile device should then connect back to its previous
wifi router SSID and continue some additional initialization tasks with the SmartThings Servers. The
Pi example app will then be listening for the SmartThings servers to contact it with the final device
onboarding confirmation.

On occasion, the SmartThings servers have been known to simply fail to connect back with the Pi
app in time, and the whole process fails. In those cases it is possible that the device DID in fact get
created, and a restart of the example app clears things up. But more likely you’ll need to restart the
onboarding process from the beginning.

It may also be helpful to examine the provisioning data files that get stored on your Pi to see how
far along in the onboarding process you had gotten. There is a utility program from my package you
can use to conveniently display this data. In a terminal window, do the following:

cd ~/st-device-sdk-c/example
~/rpi-st-device/STProv

You can optionally copy this executable to your /usr/local/bin directory so you can run it from any directory
(assuming you your PATH includes /usr/local/bin).
At present, there is a second executable, STProv64, for use on 64-bit OS configurations.

What you’ll see when you run this utility are the contents of several files that show the core SDK
provisioning status and stored info for both wifi and cloud connections. Both wifi and cloud
provisioning status should show as “DONE” if your device was fully onboarded. The wifi data
would show info for the AP you selected in the mobile app. The cloud server URL and Port are
given to the device app by the mobile app during onboarding.

Note that if you looked at this data before a device is onboarded, the status for both wifi and cloud would show
as “NONE”, or the files may not even exist yet.

Generally the last bit of data that is saved during device onboarding is the Device ID, which
comes from the SmartThings server once the device is fully registered.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device21

Finally, you may want to turn debug-level messages on by un-commenting the last line in ~/st-
device-sdk-c/stdkconfig and rebuilding the SDK core library and example application:

cd ~/st-device-sdk-c
nano stdkconfig
make
cd example
rm example
make

If you are having problems, it’s a good idea to capture (copy/paste) all the terminal output into a file
so you can share it when seeking help.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device22

Where to go from here

Once you have successfully onboarded, you are able to stop (Ctrl-C) and restart the device
application and it will simply reconnect to the SmartThings MQTT server as a normal client. You
won't have to go through the onboarding process again for this device unless you delete the device
from the mobile app. You’ll notice that if you stop the device application on your Pi, the SmartThings
mobile app will show that device with an “Offline” status.

If you delete the device from the mobile app, SmartThings sends a notification to the Pi device
application that the device has been deleted and the Pi device app simply exits with a message
letting you know that the device was deleted. You can re-onboard the device with the same serial
number (and QR code). Of course any new device apps you develop will need their own serial
numbers and QR codes. If the devices are all the same time type, they might be able to share the
same onboarding_config.json file.

Try making some changes to the example app and re-running make. Remember you don't need to
rebuild the core SDK and you won’t have to repeat the onboarding process even after changing the
device app code and rebuilding just the device app. As long as you continue to use the same json
files you originally created, SmartThings will recognize your app as the same registered device.

Develop Your Own Device App

The reason you’re doing all this is because you want to write you own device application. Get to
know the API you’ll use, as documented here.

The SmartThings core SDK API supports C-language apps, however this package also contains a
python subdirectory that includes a readme file for how to build a shared library that serves as an API
wrapper to access the C-based core SDK API. There is also an example python device application
you can try, and use as a template to build your own application.

Use the Developer Workspace to define your new projects and device profiles and remember that
each unique device profile device will (1) need its own pair of json files (onboarding_config.json -
from Developer Workspace, and device_info.json - created by keygen tool), and (2) need it’s own
QR code generated for onboarding. Plan to use a unique directory folder on your Pi for each device
application, since they each require their own device_info.json files, as well as other runtime
provisioning files.

If you instantiate multiple test devices under the same Developer Workspace device profile, then
those devices will share the same onboarding_config.json file. However they will still each need
their own device_info.json (serial number) and QR code.

Reference the example app Makefile to see how your C-application needs to be built and linked with
the SDK core library.

There are two bash files we have not yet mentioned in this guide that are used at runtime by the SDK
core library rpi module: softapstart and softapstop. Be sure these are present either in the ~/rpi-st-
device directory or in your device application directory (searched first).

Managing json files

The example C application included with the core SDK was designed to link binary versions of the
device_info and onboarding_config json files directly into the executable. While this makes sense to

https://github.com/SmartThingsCommunity/st-device-sdk-c/blob/master/doc/APIs.md
https://smartthings.developer.samsung.com/workspace/projects
http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device23

do in an MCU environment, you certainly can do this differently with your Pi-based applications.
Instead of hard-linking the json files during the make process, you can leave them as separate files to
be read in and passed to the SmartThings API at runtime. This method is used in the python device
app example included in the python directory of the rpi-st-device package.

Controlling Log Messages

You can determine what level log messages (info/warning/error/debug) are produced by the core SDK
library by editing ~/st-device-sdk-c/stdkconfig and removing or adding comment prefixes (‘#’) on the
last 4 lines of the STDK_EXTRA_CFLAGS section of the file. Then re-make the core SDK library and
your application.

Updating Packages

It’s a good idea to updated your RPI and core SDK packages periodically to be sure you’ve picked up
the latest files:

cd ~/rpi-st-device
git pull origin main
cd ~/st-device-sdk-c
git pull origin master
~/rpi-st-device/sdkbuildsetup
make

Any time you update the core SDK files, be sure to re-run the sdkbuildsetup utility to ensure the
Raspberry Pi-specific modules are still properly installed before you re-build the SDK library.

Share your projects

Finally, please consider sharing your new Pi-based device projects on the SmartThings community
and Raspberry Pi communities so we can leverage each others’ work. And if you really want to get
professional, you could pursue official device certification from SmartThings (I would hope they would
do that for Pi-based devices!).

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device24

REFERENCE: rpi-st-device folder contents

Config/Setup Scripts
installSDKdeps apt-get and pip installs of all SDK prerequisite software
sdkbuildsetup update SDK with Raspberry Pi-enabling files
SoftAPconfig auto setup and configure SoftAP capability- devices and services
mastersetup master quick-start script
initsoftapconf installs default config files for hostapd and dnsmasq (for manual installs)

SoftAP iniital config files
RPIhostapd.conf hostapd config
RPIdnsmasq.conf dnsmasq config

Tools
STProv program to display SmartThings provisioning data store files
STProv64 same as above, but for 64-bit OS environments
testhostapd bash script to put wlan0 into AP mode and test hostapd service
resetAP bash script to turn off AP mode (use if runtime error left AP on)

SDK Make
RPIMakefile Core SDK make file for building Pi-enabled library
RPIstdkconfig Make config file for building Pi-enabled library
iot_bsp_wifi_rpi.c SDK BSP wifi module for Raspberry Pi-based devices
iot_bsp_system_rpi.c SDK BSP system module for Raspberry Pi-based devices

Runtime
softapstart Start hostapd and dnsmasq services (used at runtime)
softapstop Stop hostapd and dnsmasq services (used at runtime)

Docs
README.md Repository overview
QuickstartGuide.pdf Quick start guide for mastersetup script
ConfigGuide.pdf Detailed setup and configuration guide (this document)

Python Subdirectory
setup bash script to set up your Python project directory with all required files
requirements.txt list of pre-req python modules
getprovfiles bash script to get C example provisioning files for running Python example
iotcorebuild.py API wrapper build script
STDevice.py API wrapper class methods and constants import file
py_st-dev.h SDK core API header include file for Python
pyexample.py example python device application (simple switch)
libiotcore.a pre-built SDK core library file (for convenience only; best to build yourself)
PyREADME.md instructions for building and using the API wrapper

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device25

REFERENCE: Advanced Configuration Options

There is more than one way to configure a Raspberry Pi to allow you to provision and run a
SmartThings direct connected device. There are two mandatory elements:

1) The ability to operate in Access Point (AP) mode during initial device onboarding
2) Normal client access to the internet; used post-onboarding

#2 is the simplest to address, so we’ll cover that first…
On a Pi, one could use either wireless client or Ethernet - both standard capabilities. In some cases
you may not have a hardwired Ethernet connection (e.g. Pi Zero W) and will rely solely on a wireless
connection.

If you have both connections available, the way the system networking works is that Ethernet typically
takes priority. This can be seen by issuing an ip route command in a terminal window. The
output will show a list of your network devices, with something like “metric 202” or “metric 303” at the
end of each line. This number is the priority the system uses, and the lower the number, the higher
the priority. On a Buster OS system, eth0 is 202 and wlan0 is 303. So if you are connected
simultaneously to both Ethernet and wireless, if an application is trying to communicate to the network,
it will get routed via Ethernet. But if your Ethernet is down for whatever reason, then your wireless
will be used.

Now let’s address #1 above: AP mode…
There are multiple configurations possible to satisfy this requirement. For simplicity of getting up
and running quickly, the previous instructions in this guide - along with all associated automation
scripts - were written with the simplest setup in mind: using the default wlan0 device for both client
and AP modes, and dynamic discovery of Ethernet existence. But here we’ll lay out other possible
scenarios in case the reader wants to explore them.

It’s worth mentioning again that AP mode is a very fleeting requirement for our purposes, as it’s only
used during initial device provisioning. Once your device is onboarded, it will live the rest of it’s
existence as a standard network client application.

That said, as you come to understand what AP mode does and what the SoftAP applications (hostapd
and dnsmasq) allow you to do on your Pi, you may become interested in exploring this capability
further and perhaps want to have AP mode enabled more often (even full time) so you can turn your
Pi into another wireless access point option in your home. You may have uses for this functionality
beyond what is required to get your SmartThings devices onboarded. You could, for example,
extend your AP configuration to provide internet access to the devices connected to your Pi’s AP.

On the next page is a table of the various possible combinations of configuring your Pi. There are
significant variations in complexity among these combinations, and your OS version may determine
how simple or how complex some of these may be. More on that below.

Note that our discussion here is limited to the Raspberry Pi models 3, 4, and Zero W with built-in
wireless capability. This of course could be augmented by adding a USB wifi dongle, which would
provide even more configuration options, but that will not be discussed here.

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device26

Configuration Options to support SmartThings direct connect device applications

Ethernet Wireless Devices NOTESManaged AP
√ Only possible after provisioning has been completed via other options below

√ wlan0 switched to AP mode as needed at runtime; no Ethernet
√ √ wlan0 switched to AP mode as needed at runtime; Ethernet used for internet

√ Not supported - since no options for internet
√ √ Assume full-time AP mode started at boot; Ethernet available for internet

√ √ Dual wifi devices but not run concurrently; keeps AP mode separate from wlan0
√ √ Dual wifi devices run concurrently

√ √ √ Dual wifi devices concurrent or not plus Ethernet

Notes:
Ethernet means it is connected and operational; not just that you have an Ethernet jack :-)
Wireless Devices refers to the configured ‘virtual’ devices on your system (display with iw dev command)
Default devices on a standard Raspberry Pi are eth0 (Ethernet) and wlan0 (managed Wifi)
‘Managed’ for our purposes is synonymous with ‘station’ and ‘client mode’
If no Ethernet, then ‘Managed’ device (e.g. wlan0) is used for internet / client mode communications

Regarding Ethernet - if it’s connected it will be used for client communications. If not connected,
wireless client will be needed/used.

As mentioned above, the simplest configuration for those just getting started is what is used by the
mastersetup and SoftAPconfig scripts: assuming a single wifi device - wlan0 - and dynamically
switching it to AP mode during device provisioning. Once provisioning is done, wlan0 is switched
back to normal client mode. A minor downside to this configuration is that without also an Ethernet
connection, your wireless client communications will be temporarily interrupted any time you are
onboarding new SmartThings device applications.

Another fairly simple configuration option is changing your wlan0 device to be a permanent AP device.
In this case you must also have Ethernet, which will provide the client mode communications, since
you’ll lose that ability over wireless. AP mode would be turned on at boot and left on indefinitely. The
advantage here is you gain a new wireless access point to use for other purposes, like providing
internet access to connecting devices. This configuration is actually quite commonly described in
how-tos for configuring Pis for hostapd and dnsmasq, the two applications we use to implement the
“SoftAP” capability.

There are, however, some interesting advantages to having a second and separate virtual wireless
device defined that is dedicated to AP mode. The main idea being that you leave your wlan0 device
alone and continue to use it for normal wireless client networking, while reserving the separately-
defined ‘virtual’ device for AP operation. In theory, this could reduce potential issues with switching a
single wlan0 device back and forth between station and AP modes. When Ethernet is not available,
having dual wifi devices could mean that client communications would not be interrupted while
onboarding devices - but only if the two virtual wifi devices can operate concurrently. This is a
further option to the dual wifi device setup: whether they operate concurrently, or one mode at a time.

Some notes regarding concurrent mode

For many, concurrent wifi client and AP operation could be an ideal setup. It has many advantages and would be great
for anyone that wants a full time Pi-based wireless access point that other devices in your home can connect to. On a
Debian Jessie-based system this was fairly easy to accomplish. Unfortunately Debian Stretch and Buster versions
introduced some problems, so achieving concurrent operation requires more challenging system configuration changes in
those more recent operating systems.

To confirm that your wireless hardware (not necessarily your OS) can support concurrent operation, run iw phy0 info

http://github.com/toddaustin07/rpi-st-device


V122522

http://github.com/toddaustin07/rpi-st-device27

from a terminal window and look almost to the end of the output where it says valid interface combinations. This part
of the output shows what your wireless hardware can have running simultaneously. You should see a line that looks
something like this:

* #{ managed } <= 1, #{ AP } <= 1, #{ P2P-client } <= 1, #{ P2P-device } <=1,
total <= 4, #channels <= 1

The sample output above indicates the hardware can support up to 4 different types of virtual wifi devices running at the
same time as long as they are all using the same channel. In this case you can have 0 or 1 managed, and 0 or 1 AP,
and 0 or 1 P2P-client, and 0 or 1 P2P-device all defined and running at once.

The runtime code that comes with the current PI enablement package for SmartThings direct connect
devices can support most of the scenarios shown above, however actually getting them to work on
your system - especially the concurrent dual devices on a Buster-based Pi - can be challenging and is
left to the intrepid user to explore.

Here are some links to various configuration discussion you can investigate, but proceed at your own
risk:

Changing wlan0 to a full-time AP device: <==pretty safe to try
Setting up a Raspberry Pi as a routed wireless access point

Concurrent operation on Rasbian Stretch: <==not tested
Raspberry Pi 3 Wifi Station + AP

Concurrent operation on Rasbian Buster: <==not for the faint of heart!
Raspberry Pi 4 Wifi Station + AP

Adding a dedicated AP device on Rasbian Jessie: <==confirmed to work

1: iw phy phy0 interface add wlap0 type __ap
Where ‘wlap0’ is name of new virtual device (change to what you want)

2: sudo nano /etc/dhcpcd.conf <<Add contents below to end of file
interface wlap0 << or whatever device name you used above

static ip_address=192.168.2.1/24 << or whatever ip address you want
nohook wpa_supplicant <<not to be commented out

3: Modify hostapd.conf and dnsmasq.conf accordingly; concurrent operation with wlan0 should work
with no further changes

Please post an issue to github if there are other configuration scenarios you have in mind so we can
see if they can be supported.

https://www.raspberrypi.org/documentation/configuration/wireless/access-point-routed.md
https://github.com/peebles/rpi3-wifi-station-ap-stretch
https://raspberrypi.stackexchange.com/questions/89803/access-point-as-wifi-router-repeater-optional-with-bridge/89804?newreg=e46b9f0f237d4913b4b807b2369df10c
http://github.com/toddaustin07/rpi-st-device

